কোনো বস্তুর গতি বর্ণনার জন্য প্রথমেই আমাদের একটি স্থানাঙ্ক ব্যবস্থা বা প্রসঙ্গ কাঠামো পছন্দ করে নিতে হয়। যে দৃঢ় বস্তুর সাপেক্ষে কোনো স্থানে কোনো বিন্দু বা বস্তুকে সুনির্দিষ্ট করা হয় তাকে প্রসঙ্গ কাঠামো বলে।
কোনো টেবিল, ঘরের মেঝে, রাস্তা, পার্ক, পৃথিবীপৃষ্ঠ, সূর্য, ছায়াপথ যে কোনো কিছুকে প্রসঙ্গ কাঠামো বিবেচনা করা যেতে পারে। তবে এদের সব সময়ই সুনির্দিষ্ট করতে হবে।
একমাত্রিক প্রসঙ্গ কাঠামো : একমাত্রিক বা রৈখিক গতির ক্ষেত্রে যে সরলরেখা বরাবর বস্তুটি গতিশীল প্রথমেই তার একটি বিন্দুকে মূলবিন্দু এবং একটি দিককে ধনাত্মক ধরে নিতে হয়। সেই সরলরেখাটিকে X, Y বা Z যেকোনো একটি অক্ষ হিসেবে নামকরণ করা হয়। সাধারণত আমরা ভূ-পৃষ্ঠ বরাবর সরলরৈখিক গতির ক্ষেত্রে একমাত্রিক প্রসঙ্গ কাঠামোতে অক্ষটিকে X-অক্ষ ধরে থাকি। আর খাড়া উপর নিচ বরাবর একমাত্রিক কাঠামোতে Y অক্ষ ধরে থাকি। কিন্তু এমন কোনো ধরাবাঁধা নিয়ম নেই। এ প্রসঙ্গ কাঠামোর সাপেক্ষে যাবতীয় পরিমাপ করতে হয়।
দ্বিমাত্রিক প্রসঙ্গ কাঠামো : কোনো বস্তু যদি একটি সমতলে গতিশীল থাকে তাহলে তার গতিকে দ্বিমাত্রিক গতি বা সমতলীয় গতি বলা হয়। দ্বিমাত্রিক গতি বর্ণনার জন্য আমাদের দুটি অক্ষের তথা দ্বিমাত্রিক প্রসঙ্গ কাঠামোর প্রয়োজন হয়। দ্বিমাত্রিক স্থানে সুবিধাজনক যেকোনো একটি বিন্দুকে মূল বিন্দু ধরে, ঐ বিন্দুকে ছেদকারী পরস্পর লম্ব দুটি সরলরেখা আঁকা হয়। সাধারণত যেকোনো একটি সরলরেখাকে X-অক্ষ এবং অপরটিকে Y-অক্ষ ধরা হয়। টেবিলের বা ঘরের কোনো দেয়াল বা মেঝেতে পিঁপড়ার গতি দ্বিমাত্রিক গতির উদাহরণ।
ত্রিমাত্রিক প্রসঙ্গ কাঠামো কোনো বস্তু যদি কোনো স্থানে (space) গতিশীল থাকে তাহলে তার গতিকে ত্রিমাত্রিক গতি বা স্থানিক গতি বলা হয়। ত্রিমাত্রিক গতি বর্ণনার জন্য আমাদেরকে তিনটি অক্ষের তথা ত্রিমাত্রিক প্রসঙ্গ কাঠামোর প্রয়োজন হয়। ত্রিমাত্রিক স্থানে সুবিধাজনক যেকোনো একটি বিন্দুকে মূল বিন্দু ধরে ঐ বিন্দুকে ছেদকারী পরস্পর লম্ব তিনটি সরলরেখা বিবেচনা করা হয়। এ সরলরেখা তিনটিকে X, Y ও Z অক্ষ ধরা হয়। কোনো কক্ষে একটি উড়ন্ত মাছির গতি ত্রিমাত্রিক গতির উদাহরণ।
বিভিন্ন প্রসঙ্গ কাঠামোর সাপেক্ষে কোনো বস্তুর অবস্থান ও গতি বিষয়ক বিভিন্ন রাশির মান বিভিন্ন হতে পারে।
করে দেখো তোমার পড়ার টেবিলের উপর একটি বই রাখো। মনে কর, তুমি এর একটি কোণার অবস্থান নির্দেশ করতে চাও। এখন তুমি তোমার টেবিলকে একটি প্রসঙ্গ কাঠামো এবং এর একটি কোণাকে মূল বিন্দু ধরে একটি দ্বিমাত্রিক প্রসঙ্গ কাঠামো বিবেচনা করতে পারো। আবার, তোমার ঘরের একটি কোণাকে মূল বিন্দু গণ্য করে আরেকটি প্রসঙ্গ কাঠামো ধরতে পারো। এখন এ দুই প্রসঙ্গ কাঠামোর সাপেক্ষে বই-এর কোণার স্থানাঙ্ক বের কর। |
স্থানাঙ্কগুলোর মান ভিন্ন হওয়ার কারণ প্রসঙ্গ কাঠামো ভিন্ন। তুমি যদি অন্য কোনো প্রসঙ্গ কাঠামো বিবেচনা করতে তাহলে অন্য মান পেতে ।
জড় প্রসঙ্গ কাঠামোকে গ্যালিলীয় প্রসঙ্গ কাঠামো বা নিউটনীয় প্রসঙ্গ কাঠামোও বলা হয়। এ প্রসঙ্গ কাঠামোতে নিউটনের দ্বিতীয় ও তৃতীয় গতিসূত্র খুব ভালো খাটে । একে অন্য কথায় এভাবে বলা যায়, জড় প্রসঙ্গ কাঠামো হলো সে প্রসঙ্গ কাঠামো যার মধ্যে নিউটনের গতিসূত্র অর্জন করা যায়। এরা পরস্পরের সাপেক্ষে ধ্রুব বেগে গতিশীল।
লিফট, রকেট, কৃত্রিম উপগ্রহ, ইত্যাদিকে আমরা প্রসঙ্গ কাঠামো বিবেচনা করতে পারি। কিন্তু এগুলো হবে অজড় কাঠামো, কেননা এগুলো সমবেগে চলে না। এদের ত্বরণ হয়।
আরও দেখুন...